4 Limit of a Function at a Real Number *a*

4.1 The definition

Definition 4.1.1. A function f has the limit $L \in \mathbb{R}$ as x approaches a real number a if the following two conditions are satisfied:

- (I) There exists a real number $\delta_0 > 0$ such that f(x) is defined for each x in the set $(a \delta_0, a) \cup (a, a + \delta_0)$.
- (II) For each real number $\epsilon > 0$ there exists a real number $\delta(\epsilon)$ such that $0 < \delta(\epsilon) \le \delta_0$ and

$$0 < |x - a| < \delta(\epsilon) \implies |f(x) - L| < \epsilon.$$

Remark 4.1.2. Notice that the condition that x belongs to the set $(a - \delta_0, a) \cup (a, a + \delta)$ can be expressed in terms of the distance between x and a as: $0 < |x - a| < \delta_0$.

The following figure illustrates Definition 4.1.1.

Figure 4:

Next we restate Definition 4.1.1 using the terminology of a calculator screen. The figure below shows a fictional calculator screen with 35 pixels. We assume that ymin and ymax are chosen in such a way that the number L is in the middle of the y-range and that xmin and xmax are such that a is in the middle of the x-range.

Definition 4.1.3 (Calculator Screen). A function f has a limit L as x approaches a if (I) in Definition 4.1.1 is satisfied and

• for each choice of ymin and ymaxthere exists Δ (which depends on yminand ymax) such that $0 < \Delta \leq \delta_0$ and such that whenever we choose xminand xmax such that $xmax - xmin < 2\Delta$ the graph of the function f will appear to be a straight horizontal line on the calculator screen with the only possible exception at the pixel containing x = a.

For the specific fictional calculator screen shown above, the connection between Definition 4.1.1 and Definition 4.1.3 is given by $\epsilon = (ymax - ymin)/8$, $xmin = a - \delta(\epsilon)$, $xmax = a + \delta(\epsilon)$ and $\delta(\epsilon) = \Delta$.

The fictional screen in the example below is chosen for its simplicity. The screen of TI-92 (see the manual p. 321) is 239 pixels wide and 103 pixels tall; it has 24617 pixels. The screen of TI-83 (see the manual p. 8-16) and of TI-82 is 95 pixels wide and 63 pixels tall; it has 5985 pixels. The screen of TI-85 (see the manual p. 4-13) is 127 pixels wide and 63 pixels tall; it has 8001 pixels. The screen of TI-89 (see the manual p. 222) is 159 pixels wide and 77 pixels tall; it has 12243 pixels. Using these numbers you can calculate the connection between ϵ and $\delta(\epsilon)$ in Definition 4.1.1 and the screen of your calculator.

4.2 Examples for Definition 4.1.1

Example 4.2.1. Prove $\lim_{x \to 2} (3x - 1) = 5$.

Solution. (I) Here f(x) = 3x - 1. This function is defined on \mathbb{R} . We can take any positive number for δ_0 . Since it might be useful to have a specific δ_0 to work with, we set $\delta_0 = 1$.

Let $\epsilon > 0$ be given. Let $\delta(\epsilon) = \min\{\epsilon/3, 1\}$. Assume $0 < |x - 2| < \delta(\epsilon)$. Since $\delta(\epsilon) \le \epsilon/3$, we conclude that $|x - 2| < \epsilon/3$. Next, we calculate

$$|(3x-1)-5| = |3x-6| = 3|x-2|.$$
(4.2.1)

It follows from the assumption $0 < |x-2| < \delta(\epsilon)$ that $|x-2| < \epsilon/3$. Therefore we conclude

$$|(3x-1) - 5| = 3|x - 2| < 3\frac{\epsilon}{3} = \epsilon$$

Thus we proved that

$$0 < |x - 2| < \delta(\epsilon) \quad \Rightarrow \quad |(3x - 1) - 5| < \epsilon.$$

This is exactly the implication in (II) in Definition 4.1.1. Since $\epsilon > 0$ was arbitrary this completes the proof.

Remark 4.2.2. How did I guess the formula for $\delta(\epsilon)$ in the previous proof? I first studied the implication in the statement (II) in Definition 4.1.1. The goal in that implication is to prove

$$|(3x-1)-5| < \epsilon.$$

To prove this inequality we need to assume something about |x-2|. To find out what to assume, I simplified the expression |(3x-1)-5| until |x-2| appeared (see (4.2.1)). Then I solved for |x-2|. In this process of simplification I can afford to make the right-hand side larger. This will be illustrated in the next example.

Example 4.2.3. Prove $\lim_{x \to 2} (3x^2 - 2x - 1) = 7$.

Solution. As usual, we first deal with (I). Again $f(x) = 3x^2 - 2x - 1$ is defined on \mathbb{R} and we can take any positive number for δ_0 . Since it might be useful to have a specific choice of δ_0 , we put $\delta_0 = 1$. (Notice that this implies that, from now on, we consider only in the values of x which are in the set $(1, 2) \cup (2, 3)$.)

Next we shall discover an inequality which will help us find a formula for $\delta(\epsilon)$:

$$|(3x^{2} - 2x - 1) - 7| = |3x^{2} - 2x - 8| = |(3x + 4)(x - 2)| = |3x + 4||x - 2|.$$

Now we use the fact that we are considering only the values of x which are in the set $(1, 2) \cup (2, 3)$. For $x \in (1, 2) \cup (2, 3)$ the value of |3x + 4| does not exceed 13. Therefore

$$|(3x^2 - 2x - 1) - 7| \le 13 |x - 2| \quad \text{for all} \quad x \in (1, 2) \cup (2, 3).$$
(4.2.2)

Let $\epsilon > 0$ be given. The inequality $13 |x - 2| < \epsilon$ is easy to solve for |x - 2|. The solution is |x - 2| < 3 Now we define $\delta(\epsilon)$:

$$\delta(\epsilon) = \min\left\{\frac{\epsilon}{13}, 1\right\}.$$

The remaining step of the proof is to prove the implication

$$|x-2| < \delta(\epsilon) \quad \Rightarrow \quad |(3x^2 - 2x - 1) - 7| < \epsilon.$$

I hope that at this point you can prove this implication on your own.

Example 4.2.4. Prove
$$\lim_{x \to 2} \frac{x^3 - x - 4}{x - 1} = 2.$$

Solution. We first deal with (I). Notice that the function $f(x) = \frac{x^3 - x - 4}{x - 1}$ is defined on $\mathbb{R} \setminus \{1\}$. In this proof we are interested in the values of x near a = 2. Therefore, for δ_0 we can take any positive number which is smaller than 1. Since it is useful to have a specific number, we put $\delta_0 = 1/2$. (Notice that this implies that from now on we consider only the values of x which are in the set $(3/2, 2) \cup (2, 5/2)$.)

Next we shall discover an inequality which will help us find a formula for $\delta(\epsilon)$:

$$\left|\frac{x^3 - x - 4}{x - 1} - 2\right| = \left|\frac{x^3 - 3x - 2}{x - 1}\right| = \left|\frac{(x^2 + 2x + 1)(x - 2)}{x - 1}\right| = \left|\frac{x^2 + 2x + 1}{x - 1}\right| |x - 2|.$$
(4.2.3)

Now remember that we are interested only in the values of x which are in the set $(3/2, 2) \cup (2, 5/2)$. For $x \in (3/2, 2) \cup (2, 5/2)$ we estimate

$$\left|\frac{x^2 + 2x + 1}{x - 1}\right| = \frac{x^2 + 2x + 1}{x - 1} \le \frac{16}{1/2} = 32 \quad \text{for all} \quad x \in (3/2, 2) \cup (2, 5/2). \tag{4.2.4}$$

Combining (4.2.3) and (4.2.4) we get

$$\left|\frac{x^3 - x - 4}{x - 1} - 2\right| \le 32 |x - 2| \quad \text{for all} \quad x \in (3/2, 2) \cup (2, 5/2). \tag{4.2.5}$$

Let $\epsilon > 0$ be given. The inequality $32 |x-2| < \epsilon$ is very easy to solve for |x-2|. The solution is $|x-2| < \epsilon/32$. Now we define $\delta(\epsilon)$:

$$\delta(\epsilon) = \min\left\{\frac{\epsilon}{32}, \frac{1}{2}\right\}.$$

The remaining piece of the proof is to prove the implication

$$|x-2| < \delta(\epsilon) \quad \Rightarrow \quad \left|\frac{x^3 - x - 4}{x - 1} - 2\right| < \epsilon.$$

I hope that at this point you can prove this on your own. Write down all the details of your reasoning. $\hfill \Box$

Example 4.2.5. Prove $\lim_{x \to 4} \sqrt{x} = 2$.

Solution. As usual, we first deal with (I). Notice that the function $f(x) = \sqrt{x}$ is defined on $(0, +\infty)$. We are interested in the values of x near the point a = 4. Thus, for δ_0 we can take any positive number which is < 4. Since it is useful to have a specific number, we put $\delta_0 = 1$. (Notice that this implies that from now on in this proof we are interested only in the values of x which are in the set $(3, 4) \cup (4, 5)$.)

Next we shall discover an inequality which will help us find a formula for $\delta(\epsilon)$:

$$\left|\sqrt{x} - 2\right| = \left|\frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{\sqrt{x} + 2}\right| = \left|\frac{x - 4}{\sqrt{x} + 2}\right| = \left|\frac{1}{\sqrt{x} + 2}\right| |x - 4|.$$
(4.2.6)

Now remember that we are interested only in the values of x which are in the set $(3, 4) \cup (4, 5)$. For $x \in (3, 4) \cup (4, 5)$ we estimate

$$\left|\frac{1}{\sqrt{x+2}}\right| = \frac{1}{\sqrt{x+2}} \le \frac{1}{\sqrt{3}+2} \le \frac{1}{2} \quad \text{for all} \quad x \in (3,4) \cup (4,5).$$
(4.2.7)

Combining (4.2.6) and (4.2.7) we get

$$\left|\sqrt{x} - 2\right| \le \frac{1}{2} |x - 4|$$
 for all $x \in (3, 4) \cup (4, 5).$ (4.2.8)

Let $\epsilon > 0$ be given. The inequality $\frac{1}{2}|x-4| < \epsilon$ is easy to solve for |x-4|. The solution is $|x-4| < 2\epsilon$. Now define $\delta(\epsilon)$:

$$\delta(\epsilon) = \min\left\{2\epsilon, 1\right\}.$$

The remaining step of the proof is to prove the implication

$$|x-4| < \min\{2\epsilon, 1\} \Rightarrow |\sqrt{x}-2| < \epsilon.$$

I hope that at this point you can prove this on your own. As before, please do it and write down the details of your reasoning. $\hfill \Box$

Example 4.2.6. Prove that for any a > 0, $\lim_{x \to a} \frac{1}{x} = \frac{1}{a}$.

Solution. Let a > 0. As before, we first deal with (I) in Definition 4.1.1. Notice that the function f(x) = 1/x is defined on $\mathbb{R} \setminus \{1\}$. We are interested in the values of x near the point a > 0. Thus, for δ_0 we can take any positive number which is < a. Since it is useful to have a specific number, we put $\delta_0 = a/2$. (Notice that this implies that from now on in this proof we are interested only in the values of x which are in the set $(a/2, a) \cup (a, 3a/2)$.)

Next we shall discover an inequality which will help us find a formula for $\delta(\epsilon)$:

$$\left|\frac{1}{x} - \frac{1}{a}\right| = \left|\frac{a - x}{xa}\right| = \frac{|a - x|}{xa} = \frac{1}{xa}|x - a|.$$
(4.2.9)

Now remember that we are interested only in the values of x which are in the set $(a/2, a) \cup (a, 3a/2)$. For $x \in (a/2, a) \cup (a, 3a/2)$ we estimate

$$\frac{1}{xa} \le \frac{1}{(a/2)a} = \frac{2}{a^2} \quad \text{for all} \quad x \in (a/2, a) \cup (a, 3a/2).$$
(4.2.10)

Combining (4.2.9) and (4.2.10) we get

$$\left|\frac{1}{x} - \frac{1}{a}\right| \le \frac{2}{a^2} |x - a| \quad \text{for all} \quad x \in (a/2, a) \cup (a, 3a/2).$$
(4.2.11)

Let $\epsilon > 0$ be given. The inequality $\frac{2}{a^2} |x - a| < \epsilon$ is easy to solve for |x - a|. The solution is $|x - a| < (a^2/2)\epsilon$. Now define $\delta(\epsilon)$:

$$\delta(\epsilon) = \min\left\{\frac{a^2}{2} \ \epsilon, \frac{a}{2}\right\}.$$

The remaining step of the proof is to prove the implication

$$|x-a| < \min\left\{\frac{a^2}{2} \epsilon, \frac{a}{2}\right\} \Rightarrow \left|\frac{1}{x} - \frac{1}{a}\right| < \epsilon.$$

I hope that at this point you can prove this on your own. Write down the details of your reasoning. $\hfill \Box$

Exercise 4.2.7. Find each of the following limits. Prove your claims using Definition 4.1.1.

(a)
$$\lim_{x \to 3} (2x+1)$$
 (b) $\lim_{x \to 1} (-3x-7)$ (c) $\lim_{x \to 1} (4x^2+3)$

(d) $\lim_{x \to 2} \frac{x}{x-1}$ (e) $\lim_{x \to 3} \frac{x^2 - x + 2}{x+1}$ (f) $\lim_{x \to 0} x^{1/3}$

(g)
$$\lim_{x \to 0} \left(\frac{1}{|x|}\right)^{3/\ln|x|}$$
 (h) $\lim_{x \to 0} \tan x$ (i) $\lim_{x \to 0} \frac{1}{\cos x}$

(j) $\lim_{x \to 3} \frac{1}{x}$ (k) $\lim_{x \to 1} \frac{1}{x^2 + 1}$ (l) $\lim_{x \to -2} \frac{x}{x^2 + 4x + 3}$

Exercise 4.2.8. Let $f(x) = \frac{x+1}{x^2-1}$. Does f have a limit at a = 1? Justify your answer.

Exercise 4.2.9. Prove that for any a > 0, $\lim_{x \to a} \sqrt{x} = \sqrt{a}$.

4.3 Infinite limits

Definition 4.3.1. A function f has the limit $+\infty$ as x approaches a real number a if the following two conditions are satisfied:

- (I) There exists a real number $\delta_0 > 0$ such that f(x) is defined for each x in the set $(a \delta_0, a) \cup (a, a + \delta_0)$.
- (II) For each real number M > 0 there exists a real number $\delta(M)$ such that $0 < \delta(M) \le \delta_0$ and

 $0 < |x - a| < \delta(\epsilon) \quad \Rightarrow \quad f(x) > M.$

Definition 4.3.2. A function f has the limit $-\infty$ as x approaches a real number a if the following two conditions are satisfied:

- (I) There exists a real number $\delta_0 > 0$ such that f(x) is defined for each x in the set $(a \delta_0, a) \cup (a, a + \delta_0)$.
- (II) For each real number M < 0 there exists a real number $\delta(M)$ such that $0 < \delta(M) \le \delta_0$ and

$$0 < |x - a| < \delta(\epsilon) \quad \Rightarrow \quad f(x) < M.$$

Exercise 4.3.3. Find each of the following limits. Prove your claims using the appropriate definition.

- (a) $\lim_{x \to 0} \frac{1}{|x|}$ (b) $\lim_{x \to -3} \frac{1}{(x+3)^2}$ (c) $\lim_{x \to 2} \frac{x-3}{x(x-2)^2}$
- (d) $\lim_{x \to -1} \frac{x}{(x+1)^4}$ (e) $\lim_{x \to +\infty} \frac{x^2 x + 2}{x+1}$ (f) $\lim_{x \to +\infty} \frac{x^2 x}{3-x}$